$1 \quad(2 \times 12.6)+12.6 \theta=31.7$
$\theta=6.5 \div 12.6=0.5159^{\text {c }}$
$A=\frac{1}{2} \times(12.6)^{2} \times 0.5159=40.95 \mathrm{~cm}^{2}$

3
a $\frac{1}{2} r^{2} \theta=40 \quad \therefore \theta=\frac{80}{r^{2}}$

$$
\begin{aligned}
P & =2 r+r \theta=2 r+\left(r \times \frac{80}{r^{2}}\right) \\
& =\left(2 r+\frac{80}{r}\right) \mathrm{cm}
\end{aligned}
$$

b $2 r+\frac{80}{r}<26$
$2 r^{2}+80<26 r$
$r^{2}-13 r+40<0$
$(r-5)(r-8)<0$
$5<r<8$

5 a let centre of circle be O
let midpoint of $A B$ be M
$A M^{2}=O A^{2}-O M^{2}=5^{2}-3^{2}=16$
$A M=4 \quad \therefore A B=8 \mathrm{~cm}$
b $\cos (\angle A O M)=\frac{3}{5}$
$\angle A O B=2 \times \angle A O M=1.8546^{\circ}$
$\operatorname{arc} A B=5 \times 1.8546=9.2730$
$P=2 \times(6+14-8+9.2730)=42.5 \mathrm{~cm}$
c area of segment
$=\frac{1}{2} \times 5^{2} \times 1.8546-\frac{1}{2} \times 5^{2} \times \sin 1.8546^{\text {c }}$
$=23.182-12=11.182$
area of logo $=(6 \times 14)+(2 \times 11.182)$

$$
=106 \mathrm{~cm}^{2}(3 \mathrm{sf})
$$

7 let length of wire $=3 l$
area of $A=\frac{1}{2} \times l^{2} \times \sin \frac{\pi}{3}=0.43301 l^{2}$
angle at centre of $B=l \div l=1^{\text {c }}$
area of $B=\frac{1}{2} \times l^{2} \times 1=0.5 l^{2}$
$\%$ change $=\frac{0.5 l^{2}-0.43301 l^{2}}{0.43301 l^{2}} \times 100 \%$

$$
=15.5 \%, \text { increase }
$$

$2 \quad$ a $\quad \frac{1}{2} \times(7.3)^{2} \times \theta=38.4$
$\theta=38.4 \div 26.645=1.44^{\mathrm{c}}(3 \mathrm{sf})$
b chord $A B=2 \times 7.3 \sin \left(\frac{1}{2} \theta\right)=9.633$
$\operatorname{arc} A B=7.3 \theta=10.521$
$P=9.633+10.521=20.2 \mathrm{~cm}(3 \mathrm{sf})$
4
a $A B^{2}=10^{2}=100, A C^{2}+B C^{2}=6^{2}+8^{2}=100$ $A B^{2}=A C^{2}+B C^{2}$
$\therefore \angle A C B=90^{\circ}$ (converse of Pythagoras')
\therefore triangle $A B C$ is right-angled
b $\tan (\angle A B C)=\frac{A C}{B C}=\frac{3}{4} \quad \therefore \angle A B C=0.64^{\text {c }}$
c $\angle B A C=\frac{\pi}{2}-0.6435=0.9273$
area of sectors:
centre $A=\frac{1}{2} \times 4^{2} \times 0.9273=7.4184$
centre $B=\frac{1}{2} \times 6^{2} \times 0.6435=11.5830$
centre $C=\frac{1}{4} \times \pi \times 2^{2}=3.1416$
area of triangle $A B C=\frac{1}{2} \times A C \times B C=24$
shaded area
$=24-(7.4184+11.5830+3.1416)$
$=1.86 \mathrm{~cm}^{2}$
6 a $O C=(r+2) \mathrm{cm}$

$$
\begin{aligned}
A_{1} & =\left[\frac{1}{2} \times 8^{2} \times \theta\right]-\left[\frac{1}{2} \times(r+2)^{2} \times \theta\right] \\
& =\frac{1}{2} \theta\left[64-\left(r^{2}+4 r+4\right)\right] \\
& =\frac{1}{2} \theta\left(60-4 r-r^{2}\right) \mathrm{cm}^{2}
\end{aligned}
$$

b $A_{2}=\frac{1}{2} r^{2} \theta$
$\therefore \frac{1}{2} \theta\left(60-4 r-r^{2}\right)=7 \times \frac{1}{2} r^{2} \theta$
$60-4 r-r^{2}=7 r^{2}$
$2 r^{2}+r-15=0$
$(2 r-5)(r+3)=0$
$r>0 \therefore r=2.5$

